The role of DYNAMO observations in improving GMAO reanalysis and CERES-like estimation of surface atmosphere radiation

Hailan Wang¹, Deepthi Achuthavarier²³, Siegfried Schubert³ and Wenying Su⁴

SSAI¹, GESTAR², NASA/GMAO³, NASA/Langley⁴

2015 Spring CERES Science Team Meeting May 5-7, 2015

Motivation

- CERES EBAF-Surface (monthly) and SYN1deg_Lite (daily):
 - have been used to study observed phenomena (e.g. MJO)
 - are based on Fu-Liou radiative transfer calculations which use GMAO reanalysis as an input, their quality is thus subject to the GMAO reanalysis data used
- GMAO reanalysis can be improved by:
 - improving GEOS-5 AGCM, e.g. model moist physics in tropics
 - improving GEOS-5 data assimilation system (DAS)
 - assimilating observations that were previously unavailable, particularly in-situ obs over vast oceans
 - · e.g., DYNAMO field observations over tropical Indian Ocean

DYNAMO (Dynamics of Madden-Julian Oscillation)

- A field campaign that took place in the Indian Ocean during October 2011 - March 2012 to collect in-situ observations, especially those for the MJO initiation processes
- Provides in-situ observations of T and Q, particularly their vertical profiles

CERES SYN1deg_Lite Ed3A Tropical Indian Ocean (0-10N Mean)

During convective events (e.g. MJOs): $OLR\downarrow$; cloud amount \uparrow ; cloud top and bottom altitudes \uparrow ; ice dominant; $\uparrow\uparrow$

Objectives & Approaches

Assess impact of DYNAMO observations on GMAO reanalysis

 ... and subsequent effect on CERES-like surface atmosphere radiation estimation (case study)

Objectives & Approaches

- Assess impact of DYNAMO observations on GMAO reanalysis
 - Produce Control reanalysis and DYNAMO reanalysis
 - respectively assimilate global observations without and with DYNAMO observations
 - MERRA2 tag; 1 degree resolution
 - DYNAMO period: 10ct2011-31Mar2012
- ... and subsequent effect on CERES-like surface atmosphere radiation estimation

DYNAMO Obs Assimilated

- Spatially complete and quality controlled
 - L4 5mb Radiosonde at 33 sites (7 enhanced sites;4 ships; 1 dropsonde; 21 PSS)
 - Pibal GTS Resolution Winds L4 Data at 27 sites (20 PSS + 7 NPSS)
 - NPSS GTS Resolution L4 Data at 16 NPSS (6 NPSS in GMAO blacklist)
 - PSS GTS Resolution L4 Data at 24 PSS (7 PSS in GMAO blacklist)
 - Produced by Richard Johnson and Paul Ciesielski at CSU

Time series of DYNAMO radiosonde specific humidity data count

Control vs. DYNAMO: Specific Humidity (Q) 0-10N Mean; Oct2011

Control vs. DYNAMO: Air Temperature (T) 0-10N; Oct2011

DYNAMO-Control: [60E-90E; 0-10N] mean

Specific Humidity (Q*1e3)

Q: How do the changes in GMAO reanalysis T and Q from assimilating DYNAMO obs affect the estimation of CERES-like surface atmosphere radiative fluxes?

Objectives & Approaches

Assess impact of DYNAMO observations on GMAO reanalysis

- ... and subsequent effect on CERES-like surface atmosphere radiation estimation
 - Fu-Liou calculations (preliminary)
 - 10ct-30Nov2011; daily mean
 - T & Q from GMAO reanalyses; rest from CERES SYN1deg_Lite Ed3A
 - Control T&Q
 - DYNAMO T&Q
 - Control T & DYNAMO Q
 - Control Q & DYNAMO T

FuLiou_DYNAMO vs. FuLiou_Control

OLR: ΔT vs ΔQ

 ΔQ : dominant

15

FuLiou_DYNAMO vs. FuLiou_Control

Surface downward LW

ΔT: 2/3; ΔQ: 1/3

Conclusions

- The assimilation of DYNAMO observations improves vertical profiles of T and Q in GMAO reanalysis over tropical Indian Ocean
 - partially compensating GEOS-5 AGCM moist physics deficiencies (dry/cold lower troposphere; wet/warm middle troposphere)
- The role of DYNAMO observations in affecting CERESlike surface atmosphere radiation over tropical Indian Ocean:
 - Surface downward LW: increases by 5Wm-2 regionally; primarily from ΔT , and secondarily from ΔQ
 - OLR: increases by 2-3Wm-2 regionally during dry periods; from change in ΔQ .
 - Atmospheric LW: cooling enhances